13 (повышенный уровень, время – 3 мин)

Тема: Вычисление информационного объема сообщения.

Что нужно знать:

- с помощью K бит можно закодировать $Q = 2^K$ различных вариантов (чисел)
- таблица степеней двойки, она же показывает, сколько вариантов Q можно закодировать с помощью K бит:

<i>К</i> , бит	1	2	3	4	5	6	7	8	9	10
$\it Q$, вариантов	2	4	8	16	32	64	128	256	512	1024

- при измерении количества информации принимается, что в одном байте 8 бит, а в одном килобайте (1 Кбайт) 1024 байта, в мегабайте (1 Мбайт) 1024 Кбайта
- чтобы найти информационный объем сообщения (текста) I, нужно умножить количество символов (отсчетов) N на число бит на символ (отсчет) K: $I = N \cdot K$
- две строчки текста не могут занимать 100 Кбайт в памяти
- ullet мощность алфавита M это количество символов в этом алфавите
- если алфавит имеет мощность M, то количество всех возможных «слов» (символьных цепочек) длиной N (без учета смысла) равно $Q=M^N$; для двоичного кодирования (мощность алфавита M-2 символа) получаем известную формулу: $Q=2^N$

Пример задания:

P-09. Информационная панель может отображать сообщения, состоящие из 10 цифр, причем каждая цифра может быть трёх цветов. Цифры и цвета могут повторяться. Контроллер панели выделяет под каждое сообщение одинаковое и минимальное возможное целое число байт. При этом используется посимвольное кодирование, все символы сообщения кодируются одинаковым минимально возможным количеством бит. Укажите объем памяти в байтах для хранения 100 сообщений.

Решение:

- 1) на панели 10 позиций, каждая позиция это цифра, которая может гореть одним из трёх цветов
- 2) подсчитаем, сколько сигналов можно закодировать с помощью одной позиции панели: выбираем 1 из 10 цифр, и кроме того (независимо от цифры!) один из трёх цветов; поэтому общее количество вариантов равно $10 \cdot 3 = 30$
- 3) для кодирования 30 вариантов нужно 5 битов ($2^4 < 30 \le 2^5$)
- 4) для кодирования состояния 10 позиций панели нужно $10 \cdot 5 = 50$ битов или 6,25 байтов, округляем вверх до 7 байтов (на одно сообщение)
- 5) на кодирование 100 сообщений требуется 100 · 7 = 700 байтов
- 6) Ответ: <mark>700</mark> байтов.

Ещё пример задания:

P-08. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 11 символов. Из соображений информационной безопасности каждый пароль должен содержать хотя бы 2 десятичных цифры, как прописные, так и строчные латинские буквы, а также не менее 2-х символов из 6-символьного набора: «&», «#», «\$», «*», «9». В базе

¹ Часто килобайт обозначают «Кб», а мегабайт – «Мб», но в демо-тестах разработчики ЕГЭ привели именно такие обозначения.

данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 30 пользователях потребовалось 900 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число — количество байт.

Решение:

- 7) если бы мы знали точно, сколько цифр и сколько специальных символов содержит пароль и где точно они расположены, можно было бы использовать «раздельное» кодирование: на кодирование цифр использовать по 4 бита ($2^4 > 10$), на кодирование спецсимволов по 3 бита ($2^3 > 6$), а на кодирование остальных символов (латинских букв) по 6 бит ($2^6 > 26 \cdot 2 = 52$)
- 8) поскольку количество и месторасположение цифр и спецсимволов а пароле неизвестно, нужно рассматривать полный набор символов: $10 + 6 + 26 \cdot 2 = 68$
- 9) при этом на каждый символ нужно выделить 7 бит $(2^7 > 68)$
- 10) на 11 символов пароля выделяется 77 бит, округляя вверх до целого числа байт получаем 10 байт (80 бит) на пароль
- 11) на одного пользователя выделяется 900 : 30 = 30 байт
- 12) на дополнительную информацию остается 30 10 = 20 байт
- 13) ответ: <mark>20</mark>.

Ещё пример задания:

Р-07. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы Ш, К, О, Л, А (таким образом, используется 5 различных символов). Каждый такой пароль в компьютерной системе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Укажите объём памяти в байтах, отводимый этой системой для записи 30 паролей. В ответе запишите только число, слово «байт» писать не нужно.

Решение:

- 1) согласно условию, в пароле можно использовать 5 символов
- 2) для кодирования номера одного из 5 символов нужно выделить 3 бита памяти (они позволяют закодировать $2^3 = 8$ вариантов)
- 3) для хранения всех 15 символов пароля нужно $15 \cdot 3 = 45$ бит
- 4) поскольку пароль должен занимать целое число байт, берем ближайшее большее (точнее, не меньшее) значение, которое кратно 8: это $48 = 6 \cdot 8$; то есть один пароль занимает 6 байт
- 5) тогда 30 паролей занимают 6 · 30 = 180 байт
- 6) ответ: <mark>180</mark>.

Ещё пример задания:

Р-06. Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля — ровно 11 символов. В качестве символов используются десятичные цифры и 12 различных букв местного алфавита, причём все буквы используются в двух начертаниях: как строчные, так и заглавные (регистр буквы имеет значение!). Под хранение каждого такого пароля на компьютере отводится минимально возможное и одинаковое целое количество байтов, при этом используется посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством битов.

2

Определите объём памяти в байтах, который занимает хранение 60 паролей.

Решение:

- 1) согласно условию, в пароле можно использовать 10 цифр (0..9) + 12 заглавных букв местного алфавита + 12 строчных букв, всего 10 + 12 + 12 = 34 символа
- 2) для кодирования номера одного из 34 символов нужно выделить 6 бит памяти (5 бит не хватает, они позволяют закодировать только $2^5 = 32$ варианта)
- 3) для хранения всех 11 символов пароля нужно $11 \cdot 6 = 66$ бит
- 4) поскольку пароль должен занимать целое число байт, берем ближайшее большее (точнее, не меньшее) значение, которое кратно 8: это $72 = 9 \cdot 8$; то есть один пароль занимает 9 байт
- 5) тогда 60 паролей занимают 9 · 60 = 540 байт
- 6) ответ: <mark>540</mark>.

Возможные ловушки:

• часто забывают, что пароль должен занимать ЦЕЛОЕ число байт

Ещё пример задания:

P-05. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем в битах сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

Решение:

- 1) велосипедистов было 119, у них 119 разных номеров, то есть, нам нужно закодировать 119 вариантов
- 2) по таблице степеней двойки находим, что для этого нужно минимум 7 бит (при этом можно закодировать 128 вариантов, то есть, еще есть запас); итак, 7 бит на один отсчет
- 3) когда 70 велосипедистов прошли промежуточный финиш, в память устройства записано 70 отсчетов
- 4) поэтому в сообщении 70*7 = 490 бит информации.

Возможные ловушки:

- дано число, которое есть в условии (неверные ответы 70 бит, 70 байт, 119 байт), чтобы сбить случайное угадывание
- указано правильное число, но другие единицы измерения (мог быть вариант 490 байт)
- расчет на невнимательное чтение условия: можно не заметить, что требуется определить объем только 70 отсчетов, а не всех 119 (мог быть вариант 119*7=833 бита)

Еще пример задания:

P-04. Объем сообщения, содержащего 4096 символов, равен 1/512 части Мбайта. Какова мощность алфавита, с помощью которого записано это сообщение?

Большие числа. Что делать?

Обычно (хотя и не всегда) задачи, в условии которых даны большие числа, решаются достаточно просто, если выделить в этих числах степени двойки. На эту мысль должны сразу наталкивать такие числа как

$$128 = 2^7$$
, $256 = 2^8$, $512 = 2^9$, $1024 = 2^{10}$, $2048 = 2^{11}$, $4096 = 2^{12}$, $8192 = 2^{13}$, $16384 = 2^{14}$, $65536 = 2^{16}$ и т.п.

Нужно помнить, что соотношение между единицами измерения количества информации

также представляют собой степени двойки:

1 байт = 8 бит =
$$2^3$$
 бит,
1 Кбайт = 1024 байта = 2^{10} байта
= $2^{10} \cdot 2^3$ бит = 2^{13} бит,
1 Мбайт = 1024 Кбайта = 2^{10} Кбайта
= $2^{10} \cdot 2^{10}$ байта = 2^{20} байта
= $2^{20} \cdot 2^3$ бит = 2^{23} бит.

Правила выполнения операций со степенями:

• при умножении степени при одинаковых основаниях складываются

$$2^a \cdot 2^b = 2^{a+b}$$

• ... а при делении – вычитаются:

$$\frac{2^a}{2^b} = 2^{a-b}$$

Решение (вариант 1):

- 1) в сообщении было 4096 = 2¹² символов
- 2) объем сообщения

$$1/512$$
 Мбайта = $2^{23}/512$ бита = $2^{23}/2^9$ бита = 2^{14} бита (= 16384 бита!)

3) место, отведенное на 1 символ:

$$2^{14}$$
 бита / 2^{12} символов = 2^2 бита на символ = 4 бита на символ

- 4) 4 бита на символ позволяют закодировать $2^4 = 16$ разных символов
- 5) поэтому мощность алфавита 16 символов

Возможные ловушки:

• легко запутаться, если выполнять вычисления «в лоб», не через степени двойки

Решение (вариант 2, предложен В.Я. Лаздиным):

1) объем сообщения

- 2) на 1 символ приходится 2048 байт / 4096 = 1/2 байта = 4 бита
- 3) 4 бита на символ позволяют закодировать $2^4 = 16$ разных символов
- 4) поэтому мощность алфавита <mark>16</mark> символов

Возможные проблемы:

- не всегда удобно работать с дробными числами (1/2 байта)
- метод разработан специально для этой задачи, где он хорошо работает; в других задачах может быть не так гладко

Еще пример задания:

P-03. В зоопарке 32 обезьяны живут в двух вольерах, А и Б. Одна из обезьян заболела. Сообщение «Заболевшая обезьяна живет в вольере А» содержит 4 бита информации. Сколько обезьян живут в вольере Б?

Решение (вариант 1):

- 1) информация в 4 бита соответствует выбору одного из 16 вариантов, ...
- 2) ... поэтому в вольере А живет 1/16 часть всех обезьян (это самый важный момент!)
- 3) всего обезьян 32, поэтому в вольере А живет

32/16 = 2 обезьяны

4) поэтому в вольере Б живут все оставшиеся

5) ответ – <mark>30</mark>.

Возможные ловушки:

- можно сделать неверный вывод о том, что в вольере А живет 4 обезьяны (столько же, сколько бит информации мы получили), следовательно, в вольере Б живут оставшиеся 28 обезьян (неверный ответ 3)
- после п. 1 можно сделать (неверный) вывод о том, что в вольере А живет 16 обезьян, следовательно, в вольере Б тоже 16 (неверный ответ 2)

Решение (вариант 2, использование формулы Шеннона²):

- 1) заболевшая обезьяна может жить в вольере А (событие 1) или в вольере Б (событие 2)
- 2) количество информации в сообщении о произошедшем событии с номером i равно $I_i = -\log_2 p_i$, где p_i вероятность этого события; таким образом, получаем вероятность того, что заболевшая обезьяна живет в вольере A:

$$p_1 = 2^{-I_1} \implies p_1 = 2^{-4} = \frac{1}{16}$$
.

3) у нас не было никакой предварительной информации о том, где живет заболевшая обезьяна, поэтому можно считать, что вероятность определяется количеством обезьян в вольере — если вероятность равна 1/16, то в вольере живет 1/16 часть всех обезьян:

6) поэтому в вольере Б живут все оставшиеся

7) ответ – <mark>30</mark>.

Еще пример задания:

P-02. В корзине лежат 32 клубка шерсти, из них 4 красных. Сколько бит информации несет сообщение о том, что достали клубок красной шерсти?

Решение (вариант 1):

- 1) красные клубки шерсти составляют 1/8 от всех, ...
- 2) поэтому сообщение о том, что первый вынутый клубок шерсти красный, соответствует выбору одного из 8 вариантов
- 3) выбор 1 из 8 вариантов это информация в 3 бита (по таблице степеней двойки)
- 4) ответ <mark>3</mark>.

Решение (вариант 2, использование формулы Шеннона):

- 1) красные клубки шерсти составляют 1/8 от всех, поэтому вероятность p_k того, что первый вынутый клубок шерсти красный, равна 1/8
- 2) по формуле Шеннона находим количество информации в битах:

$$I_k = -\log_2 p_k$$
 \Rightarrow $I_k = -\log_2 \frac{1}{8} = \log_2 8 = 3$ бита.

3) ответ – <mark>3</mark>.

² Фактически это не другой способ решения, а более строгое обоснование предыдущего алгоритма.

Еще пример задания:

P-01. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер — одинаковым и минимально возможным целым количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

Решение:

- 1) всего используется 26 букв + 10 цифр = 36 символов
- 2) для кодирования 36 вариантов необходимо использовать 6 бит, так как $2^5 = 32 < 36 \le 2^6 = 64 \, , \text{ т.е. пяти бит не хватит (они позволяют кодировать только 32 варианта), а шести уже достаточно$
- 3) таким образом, на каждый символ нужно 6 бит (минимально возможное количество бит)
- 4) полный номер содержит 7 символов, каждый по 6 бит, поэтому на номер требуется $6 \cdot 7 = 42\,\mathrm{битa}$
- 5) по условию каждый номер кодируется целым числом байт (в каждом байте 8 бит), поэтому требуется 6 байт на номер ($5 \cdot 8 = 40 < 42 \le 6 \cdot 8 = 48$), пяти байтов не хватает, а шесть минимально возможное количество
- 6) на 20 номеров нужно выделить $20 \cdot 6 = 120$ байт
- 7) ответ 120.

Возможные ловушки:

- если не обратить внимание на то, что каждый номер кодируется целым числом БАЙТ, получаем неверный ответ 2 ($20 \cdot 42 = 105 \cdot 8$ бит = 105 байт)
- если по невнимательности считать, что каждый СИМВОЛ кодируется целым числом байт, получаем 7 байт на символ и всего 140 байт (неверный ответ 4)
- если «забыть» про цифры, получим всего 26 символов, 5 бит на символ, 35 бит (5 полных байт) на каждый номер и неверный ответ 100 байт (на 20 номеров)

Еще пример задания:

Р-00. В школьной базе данных хранятся записи, содержащие информацию об учениках: <Фамилия> — 16 символов: русские буквы (первая прописная, остальные строчные), <Имя> — 12 символов: русские буквы (первая прописная, остальные строчные), <Отчество> — 16 символов: русские буквы (первая прописная, остальные строчные), <Год рождения> — числа от 1992 до 2003.

Каждое поле записывается с использованием минимально возможного количества бит. Определите минимальное количество байт, необходимое для кодирования одной записи, если буквы е и ё считаются совпадающими.

Решение:

- 1) очевидно, что нужно определить минимально возможные размеры в битах для каждого из четырех полей и сложить их;
- 2) важно! известно, что первые буквы имени, отчества и фамилии всегда заглавные, поэтому можно хранить их в виде строчных и делать заглавными только при выводе на экран (но нас это уже не волнует)
- 3) таким образом, для символьных полей достаточно использовать алфавит из 32 символов (русские строчные буквы, «е» и «ё» совпадают, пробелы не нужны)
- 4) для кодирования каждого символа 32-символьного алфавита нужно 5 бит (32 = 2^5), поэтому для хранения имени, отчества и фамилии нужно (16 + 12 + 16) \bullet 5=220 бит

- 5) для года рождения есть 12 вариантов, поэтому для него нужно отвести 4 бита (2⁴ = 16 ≥ 12)
- 6) таким образом, всего требуется 224 бита или 28 байт
- 7) правильный ответ <mark>28 байт</mark>.

Задачи для тренировки³:

- 1) Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100 процентов, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений в байтах.
- 2) Обычный дорожный светофор без дополнительных секций подает шесть видов сигналов (непрерывные красный, желтый и зеленый, мигающие желтый и зеленый, красный и желтый одновременно). Электронное устройство управления светофором последовательно воспроизводит записанные сигналы. Подряд записано 100 сигналов светофора. Сколько байт нужно для записи этих данных? (Условие некорректно, имеется в виду количество целых байтов.)
- 3) Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 16 символов, а второй текст в алфавите из 256 символов. Во сколько раз количество информации во втором тексте больше, чем в первом?
- 4) Объем сообщения 7,5 Кбайт. Известно, что данное сообщение содержит 7680 символов. Какова мощность алфавита?
- 5) Дан текст из 600 символов. Известно, что символы берутся из таблицы размером 16 на 32. Определите информационный объем текста в битах.
- 6) Мощность алфавита равна 256. Сколько Кбайт памяти потребуется для сохранения 160 страниц текста, содержащего в среднем 192 символа на каждой странице?
- 7) Объем сообщения равен 11 Кбайт. Сообщение содержит 11264 символа. Какова мощность алфавита?
- 8) Для кодирования секретного сообщения используются 12 специальных значков-символов. При этом символы кодируются одним и тем же минимально возможным количеством бит. Чему равен информационный объем в байтах сообщения длиной в 256 символов?
- 9) Мощность алфавита равна 64. Сколько Кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?
- 10) Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем в битах сообщения, состоящего из 180 нот?
- 11) В некоторой стране автомобильный номер длиной 6 символов составляется из заглавных букв (всего используется 12 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 32 автомобильных номеров.

1. Демонстрационные варианты ЕГЭ 2004-2016 гг.

- 2. Гусева И.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. СПб: Тригон, 2009.
- 3. Якушкин П.А., Лещинер В.Р., Кириенко Д.П. ЕГЭ 2010. Информатика. Типовые тестовые задания. М.: Экзамен, 2010.
- 4. Крылов С.С., Ушаков Д.М. ЕГЭ 2010. Информатика. Тематическая рабочая тетрадь. М.: Экзамен, 2010.
- 5. Якушкин П.А., Ушаков Д.М. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010. Информатика. М.: Астрель, 2009.
- 6. Абрамян М.Э., Михалкович С.С., Русанова Я.М., Чердынцева М.И. Информатика. ЕГЭ шаг за шагом. М.: НИИ школьных технологий, 2010.
- 7. Чуркина Т.Е. ЕГЭ 2011. Информатика. Тематические тренировочные задания. М.: Эксмо, 2010.
- 8. Крылов С.С., Лещинер В.Р., Якушкин П.А. ЕГЭ 2011. Информатика. Универсальные материалы для подготовки учащихся. М.: Интеллект-центр, 2011.
- 9. Крылов С.С., Ушаков Д.М. ЕГЭ 2015. Информатика. Тематические тестовые задания. М.: Экзамен, 2015.
- 10. Ушаков Д.М. ЕГЭ-2015. Информатика. 20 типовых вариантов экзаменационных работ для подготовки к ЕГЭ. М.: Астрель, 2014.

³ Источники заданий:

- 12) В некоторой стране автомобильный номер длиной 5 символов составляется из заглавных букв (всего используется 30 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 50 автомобильных номеров.
- 13) В некоторой стране автомобильный номер длиной 6 символов составляется из заглавных букв (всего используется 19 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 40 автомобильных номеров.
- 14) В некоторой стране автомобильный номер длиной 6 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 20 автомобильных номеров.
- 15) В велокроссе участвуют 678 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем в байтах сообщения, записанного устройством, после того как промежуточный финиш прошли 200 велосипедистов?
- 16) В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 18 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 60 автомобильных номеров.
- 17) В базе данных хранятся записи, содержащие информацию о датах. Каждая запись содержит три поля: год (число от 1 до 2100), номер месяца (число от 1 до 12) и номер дня в месяце (число от 1 до 31). Каждое поле записывается отдельно от других полей с помощью минимально возможного числа бит. Определите минимальное количество бит, необходимых для кодирования одной записи.
- 18) В некоторой стране автомобильный номер длиной 11 символов составляется из заглавных букв (всего используется 25 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 85 автомобильных номеров.
- 19) В некоторой стране автомобильный номер длиной 5 символов составляется из заглавных букв (всего используется 30 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 50 автомобильных номеров.
- 20) В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 30 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 32 автомобильных номеров.
- 21) В некоторой стране автомобильный номер длиной 5 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и

- минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 40 автомобильных номеров.
- 22) В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 22 буквы) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным количеством байт. Определите объем памяти в байтах, необходимый для хранения 50 автомобильных номеров.
- 23) Объем сообщения равен 11 Кбайт. Сообщение содержит 11264 символа. Какова максимальная мощность алфавита, использованного при передаче сообщения?
- 24) В школе 800 учащихся, коды учащихся записаны в школьной информационной системе с помощью минимального количества бит. Каков информационный объем в байтах сообщения о кодах 320 учащихся, присутствующих на конференции?
- 25) В некоторой стране автомобильный номер состоит из 8 символов. Первый символ одна из 26 латинских букв, остальные семь десятичные цифры. Пример номера A1234567. Каждый символ кодируется минимально возможным количеством бит, а каждый номер одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 30 автомобильных номеров.
- 26) Для регистрации на сайте некоторой страны пользователю необходимо придумать пароль длиной ровно 11 символов. В пароле можно использовать десятичные цифры и 12 различных символов местного алфавита, причем все буквы используются в двух начертаниях строчные и прописные. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый пароль одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 60 паролей.
- 27) Для регистрации на сайте некоторой страны пользователю необходимо придумать пароль длиной ровно 15 символов. В пароле можно использовать десятичные цифры и 11 различных символов местного алфавита, причем все буквы используются в двух начертаниях строчные и прописные. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый пароль одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 30 паролей.
- 28) Для регистрации на сайте некоторой страны пользователю необходимо придумать пароль длиной ровно 11 символов. В пароле можно использовать десятичные цифры и 32 различных символа местного алфавита, причем все буквы используются в двух начертаниях строчные и прописные. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый пароль одинаковым и минимально возможным целым количеством байт. Определите объем памяти в байтах, необходимый для хранения 50 паролей.
- 29) В некоторой стране автомобильный номер длиной 5 символов составляют из заглавных букв (задействовано 30 различных букв) и любых десятичных цифр в любом порядке. Каждый такой номер в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 50 номеров.
- 30) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 11 символов и содержащий только символы И, К, Л, М, Н. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 20 паролей.

10

- 31) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы К, О, М, П, Ь, Ю, Т, Е, Р. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 30 паролей.
- 32) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы E, Г, Э, 2, 0, 1, 3. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 25 паролей.
- 33) (http://ege.yandex.ru) Автомобильный номер состоит из нескольких букв (количество букв одинаковое во всех номерах), за которыми следуют три цифры. При этом используются 10 цифр и только 5 букв: H, O, M, E и P. Нужно иметь не менее 100 тысяч различных номеров. Какое наименьшее количество букв должно быть в автомобильном номере?
- 34) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 7 символов и содержащий только символы из 12-буквенного набора A, B, E, K, M, H, O, P, C, T, У, X. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 15 байт. Определите объём памяти в байтах, необходимый для хранения сведений о 150 пользователях.
- 35) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из 7-буквенного набора A, B, E, K, M, H, O. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 10 байт. Определите объём памяти в байтах, необходимый для хранения сведений о 100 пользователях.
- 36) При регистрации в компьютерной системе каждому пользователю выдаётся идентификатор, состоящий из 10 символов, первый и последний из которых одна из 18 букв, а остальные цифры (допускается использование 10 десятичных цифр). Каждый такой идентификатор в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование; все цифры кодируются одинаковым и минимально возможным количеством бит, все буквы также кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 25 паролей.
- 37) При регистрации в компьютерной системе каждому пользователю выдаётся идентификатор, состоящий из 8 символов, первый и последний из которых одна из 18 букв, а остальные цифры (допускается использование 10 десятичных цифр). Каждый такой идентификатор в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование; все цифры кодируются одинаковым и минимально возможным количеством бит, все буквы также кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 500 паролей.

- 38) (http://ege.yandex.ru) При регистрации в компьютерной системе, используемой при проведении командной олимпиады, каждому ученику выдается уникальный идентификатор целое число от 1 до 1000. Для хранения каждого идентификатора используется одинаковое и минимально возможное количество бит. Идентификатор команды состоит из последовательно записанных идентификаторов учеников и 8 дополнительных бит. Для записи каждого идентификатора команды система использует одинаковое и минимально возможное количество байт. Во всех командах равное количество участников. Сколько участников в каждой команде, если для хранения идентификаторов 20 команд-участниц потребовалось 180 байт?
- 39) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из 7-буквенного набора H, O, P, C, T, У, Х. В базе данных для хранения сведений о каждом пользователе отведено одинаковое целое число байт, при этом для хранения сведений о 100 пользователях используется 1400 байт. Для каждого пользователя хранятся пароль и дополнительные сведения. Для хранения паролей используют посимвольное кодирование, все символы кодируются одинаковым и минимально возможным количеством бит. Сколько бит отведено для хранения дополнительных сведений о каждом пользователе?
- 40) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из набора И,Н,Ф, О, Р, М, А, Т, К. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 25 паролей.
- 41) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 11 символов и содержащий только символы А, Б, В, Г, Д, Е. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт, при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит. Определите, сколько байт необходимо для хранения 20 паролей.
- 42) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 21 символа и содержащий только символы A, D, F, H, X, Y, Z (таким образом, используется 7 различных символов). Каждый такой пароль в компьютерной системе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Укажите объём памяти в байтах, отводимый этой системой для записи 40 паролей. В ответе запишите только число, слово «байт» писать не нужно.
- 43) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 9 символов и содержащий только символы из 10-символьного набора: A, B, C, D, E, F, G, H, K, L. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 6 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 100 пользователях.
- 44) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы А, Б, В, Г, Д, Е. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт, при этом используют посимвольное кодирование и все символы кодируются одинаковым и

- минимально возможным количеством бит. Определите, сколько байт необходимо для хранения 20 паролей.
- 45) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 30 символов и содержащий только символы А, Б, В, Г, Д. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт, при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит. Определите, сколько байт необходимо для хранения 50 паролей.
- 46) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 12-символьного набора: A, B, C, D, E, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 12 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 50 пользователях. В ответе запишите только целое число количество байт.
- 47) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 10 символов и содержащий только символы из 26-символьного латинского алфавита. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 6 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 30 пользователях.
- 48) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 7 символов и содержащий только символы из 10-символьного набора: A, B, C, D, E, F, G, H, K, L. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 16 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 20 пользователях.
- 49) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 12 символов и содержащий только символы из 5-символьного набора: А, В, С, D, Е. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 11 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 40 пользователях.
- 50) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 12-символьного набора: A, B, C, D, E, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения

- сведений о 20 пользователях потребовалось 300 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число количество байт.
- 51) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 11 символов и содержащий только символы из 12-символьного набора: A, B, C, D, E, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 50 пользователях потребовалось 700 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число количество байт.
- 52) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 8-символьного набора: A, B, C, D, E, F, G, H. В базе данных для хранения сведений о каждом пользователе отведено одинаковое минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт, одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 320 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число количество байт.
- 53) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 20 символов и содержащий только символы из 8-символьного набора: A, B, C, D, E, F, G, H. В базе данных для хранения сведений о каждом пользователе отведено одинаковое минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт, одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 400 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число количество байт.
- 54) Для регистрации на сайте необходимо продумать пароль, состоящий из 10 символов. Он должен содержать хотя бы 3 цифры, а также строчные или заглавные буквы латинского алфавита (алфавит содержит 26 букв). В базе данных для хранения сведения о каждом пользователе отведено одинаковое и минимальное возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственного пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт одинаковое для каждого пользователя. Для хранения сведений о 30 пользователях потребовалось 870 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе. В ответе запишите только целое число количество байт.
- 55) Для регистрации на сайте необходимо продумать пароль, состоящий из 9 символов. Он должен содержать хотя бы 1 цифру, строчные или заглавные буквы латинского алфавита (алфавит содержит 26 букв) и хотя бы 1 символ из перечисленных: «.», «\$», «#», «@», «%», «&». В базе данных для хранения сведения о каждом пользователе отведено одинаковое и минимальное возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственного пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего

- выделено целое число байт одинаковое для каждого пользователя. Для хранения сведений о двадцати пользователях потребовалось 500 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе. В ответе запишите только целое число количество байт.
- 56) (**А. Жуков**) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 10 символов. В качестве символов используют прописные буквы латинского алфавита, т.е. 26 различных символов. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено 15 байт на одного пользователя. В компьютерной системе выделено 4 Кб для хранения сведений о пользователях. О каком наибольшем количестве пользователей может быть сохранена информация в системе? В ответе запишите только целое число количество пользователей.
- 57) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 7 символов. В качестве символов используют прописные и строчные буквы латинского алфавита (в нём 26 символов). В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено 12 байт на одного пользователя. В компьютерной системе выделено 2 Кб для хранения сведений о пользователях. О каком наибольшем количестве пользователей может быть сохранена информация в системе? В ответе запишите только целое число количество пользователей.
- 58) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 9 символов. В качестве символов используют прописные и строчные буквы латинского алфавита (в нём 26 символов), а также десятичные цифры. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено 18 байт на одного пользователя. В компьютерной системе выделено 1 Кб для хранения сведений о пользователях. О каком наибольшем количестве пользователей может быть сохранена информация в системе? В ответе запишите только целое число количество пользователей.
- 59) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 11 символов. В качестве символов используют прописные и строчные буквы латинского алфавита (в нём 26 символов), а также десятичные цифры. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено 13 байт на одного пользователя. В компьютерной системе выделено 1 Кб для хранения сведений о пользователях. О каком наибольшем количестве пользователей может быть сохранена информация в системе? В ответе запишите только целое число количество пользователей.
- 60) (**Д.В. Богданов**) В некоторой стране используют автомобильные номера, состоящие из двух частей: ровно двух букв из 10-буквенного алфавита и далее ровно трёх десятичных цифр. Каждая часть кодируется отдельно помощью минимально возможного количества битов, одинакового

- для всех номеров. Какое минимальное количество байт необходимо зарезервировать для хранения информации о 24 таких номерах?
- 61) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из набора, содержащего все латинские буквы (заглавные и строчные) и десятичные цифры. В базе данных для хранения сведений о каждом пользователе отведено одинаковое минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым минимально возможным количеством бит. Кроме, собственно, пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 700 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число количество байт.
- 62) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий символы из набора: A, B, C, D, E, F, G, H, K, а также не менее 4-х специальных символов из набора \$, #, @. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 15 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 100 пользователях.
- 63) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 12 символов и содержащий символы латинского алфавита (заглавные и строчные), десятичные цифры, а также не менее 6 специальных символов из набора \$, #, @, ^. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения. Для хранения сведений о 40 пользователях выделили 1080 байт. Сколько байт можно использовать для хранения дополнительных сведений о каждом пользователе?
- 64) (Д.В. Богданов) Для хранения длинных чисел можно использовать алгоритм кодирования повторов (RLE), который заменяет повторяющиеся цифры (серии) на одну цифру и число её повторов. Например, число 999 после сжатия станет числом 39. Если длина серии превосходит 9, она разбивается на несколько серий длиной 9 и, возможно, ещё одну длиной меньше 9. После сжатия производится поразрядное кодирование, все цифры кодируются одинаковым и минимально возможным количеством бит. Сколько байт потребуется для сжатия и кодирования указанным способом числа 12300000000000555?
- 65) Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 1000) и дополнительная информация, которая занимает 25 байт. Личный код содержит 15 символов и может включать латинские буквы (заглавные и строчные буквы различаются), десятичные цифры и специальные знаки из набора @#\$%^&*(). Для хранения кода используется посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Сколько байтов данных хранится на электронной карте?
- 66) Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 200) и дополнительная информация, которая занимает 12 байт. Личный код содержит 13 символов и может включать латинские буквы (заглавные и строчные буквы различаются) и десятичные цифры. Для хранения кода используется

- посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Сколько байтов данных хранится на электронной карте?
- 67) Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 120) и дополнительная информация. Личный код содержит 11 символов и может включать латинские буквы (заглавные и строчные буквы различаются) и десятичные цифры. Для хранения кода используется посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Известно, что на карте хранится всего 28 байтов данных. Сколько байтов занимает дополнительная информация?
- 68) Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 1200) и дополнительная информация. Личный код содержит 17 символов и может включать латинские буквы (заглавные и строчные буквы различаются), десятичные цифры и специальные знаки из набора @#\$%^&*(). Для хранения кода используется посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Известно, что на карте хранится всего 48 байтов данных. Сколько байтов занимает дополнительная информация?
- 69) (А. Жуков) Каждый сотрудник предприятия получает электронный пропуск, на котором записаны его личный код, номер кабинета, в котором он работает и некоторая дополнительная информация. Личный код сотрудника состоит из 5 символов, каждый из которых может быть одной из 23-х прописных латинских букв (не используются буквы В, О и I) или десятичной цифрой (от 0 до 9). Для записи кода на пропуске отведено минимально возможное целое число байт. При этом используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством бит. При нумерации кабинетов используют следующую систему первая цифра номера обозначает этаж, оставшиеся две номер кабинета на этаже, при этом используются только целые числа из диапазона от 100 до 299 включительно. Для записи номера кабинета на пропуске используется минимальное и целое число байт. Всего на пропуске хранится 56 байт данных. Сколько байт выделено для хранения дополнительных сведений об одном сотруднике? В ответе запишите только целое число количество байт.
- 70) Каждый сотрудник предприятия получает электронный пропуск, на котором записаны личный код сотрудника, код подразделения и некоторая дополнительная информация. Личный код состоит из 14 символов, каждый из которых может быть заглавной латинской буквой (используется 26 различных букв) или одной из цифр от 0 до 9. Для записи кода на пропуске отведено минимально возможное целое число байт. При этом используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством бит. Код подразделения состоит из 8 символов: на первых пяти позициях могут стоять латинские буквы от А до F, затем три десятичных цифры. Код подразделения записан на пропуске как двоичное число (используется посимвольное кодирование) и занимает минимально возможное целое число байт. Всего на пропуске хранится 30 байт данных. Сколько байт выделено для хранения дополнительных сведений об одном сотруднике? В ответе запишите только целое число количество байт.
- 71) Каждый сотрудник предприятия получает электронный пропуск, на котором записаны личный код сотрудника, код подразделения и некоторая дополнительная информация. Личный код состоит из 11 символов, каждый из которых может быть заглавной латинской буквой (используется 15 различных букв) или одной из цифр от 0 до 9. Для записи кода на пропуске отведено минимально

возможное целое число байт. При этом используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством бит. Код подразделения состоит из 8 символов: в каждой из пяти первых позиций стоит одна из 26 латинских букв, затем — три десятичных цифры. Код подразделения записан на пропуске как двоичное число (используется посимвольное кодирование) и занимает минимально возможное целое число байт. Всего на пропуске хранится 30 байт данных. Сколько байт выделено для хранения дополнительных сведений об одном сотруднике? В ответе запишите только целое число — количество байт.